ResViT-Rice: A Deep Learning Model Combining Residual Module and Transformer Encoder for Accurate Detection of Rice Diseases
نویسندگان
چکیده
Rice is a staple food for over half of the global population, but it faces significant yield losses: up to 52% due leaf blast disease and brown spot diseases, respectively. This study aimed at proposing hybrid architecture, namely ResViT-Rice, by taking advantage both CNN transformer accurate detection diseases. We employed ResNet as backbone network establish model introduced encoder component from architecture. The convolutional block attention module was also integrated ResViT-Rice further enhance feature-extraction ability. processed 1648 training 104 testing images two diseases healthy class. To verify effectiveness proposed we conducted comparative evaluation with popular deep learning models. experimental result suggested that achieved promising results in rice disease-detection task, highest accuracy reaching 0.9904. corresponding precision, recall, F1-score were all 0.96, an AUC 0.9987, loss rate 0.0042. In conclusion, can better extract features different thereby providing more robust classification output.
منابع مشابه
Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملthe stady and analysis of rice agroclimatology in lenjan
the west of esfahan province, iran, is one of the most important agricultural areas throughout the country due to the climate variability and life-giving water of zayanderood river. rice is one of the major and economic crops in this area. the most important climatic elements in agricultural activities which should be considered include temperature, relative humidity, precipitation and wind. so...
15 صفحه اولthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agriculture
سال: 2023
ISSN: ['2077-0472']
DOI: https://doi.org/10.3390/agriculture13061264